Copied to
clipboard

G = C23.404C24order 128 = 27

121st central stem extension by C23 of C24

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C24.15C23, C23.404C24, C22.2002+ 1+4, C428C432C2, (C22×C4).391D4, C23.618(C2×D4), C23.330(C4○D4), C23.11D431C2, C23.23D451C2, (C2×C42).524C22, (C22×C4).525C23, (C23×C4).101C22, C22.280(C22×D4), C24.3C2251C2, C22.39(C4.4D4), C4.54(C22.D4), (C22×D4).151C22, C2.19(C22.29C24), C2.C42.155C22, C2.37(C22.47C24), (C4×C22⋊C4)⋊77C2, (C22×C4⋊C4)⋊26C2, (C2×C4).833(C2×D4), (C2×C4⋊D4).35C2, C2.20(C2×C4.4D4), (C2×C4).816(C4○D4), (C2×C4⋊C4).860C22, C22.281(C2×C4○D4), (C2×C22⋊C4).47C22, C2.39(C2×C22.D4), SmallGroup(128,1236)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C23.404C24
C1C2C22C23C22×C4C2×C42C4×C22⋊C4 — C23.404C24
C1C23 — C23.404C24
C1C23 — C23.404C24
C1C23 — C23.404C24

Generators and relations for C23.404C24
 G = < a,b,c,d,e,f,g | a2=b2=c2=1, d2=ca=ac, e2=g2=a, f2=ba=ab, ede-1=gdg-1=ad=da, ae=ea, af=fa, ag=ga, bc=cb, fdf-1=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef-1=ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >

Subgroups: 612 in 298 conjugacy classes, 108 normal (16 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C24, C24, C2.C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C2×C4⋊C4, C4⋊D4, C23×C4, C23×C4, C22×D4, C22×D4, C4×C22⋊C4, C428C4, C23.23D4, C24.3C22, C23.11D4, C22×C4⋊C4, C2×C4⋊D4, C23.404C24
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C22.D4, C4.4D4, C22×D4, C2×C4○D4, 2+ 1+4, C2×C22.D4, C2×C4.4D4, C22.29C24, C22.47C24, C23.404C24

Smallest permutation representation of C23.404C24
On 64 points
Generators in S64
(1 36)(2 33)(3 34)(4 35)(5 63)(6 64)(7 61)(8 62)(9 16)(10 13)(11 14)(12 15)(17 22)(18 23)(19 24)(20 21)(25 32)(26 29)(27 30)(28 31)(37 41)(38 42)(39 43)(40 44)(45 60)(46 57)(47 58)(48 59)(49 54)(50 55)(51 56)(52 53)
(1 7)(2 8)(3 5)(4 6)(9 29)(10 30)(11 31)(12 32)(13 27)(14 28)(15 25)(16 26)(17 56)(18 53)(19 54)(20 55)(21 50)(22 51)(23 52)(24 49)(33 62)(34 63)(35 64)(36 61)(37 48)(38 45)(39 46)(40 47)(41 59)(42 60)(43 57)(44 58)
(1 34)(2 35)(3 36)(4 33)(5 61)(6 62)(7 63)(8 64)(9 14)(10 15)(11 16)(12 13)(17 24)(18 21)(19 22)(20 23)(25 30)(26 31)(27 32)(28 29)(37 43)(38 44)(39 41)(40 42)(45 58)(46 59)(47 60)(48 57)(49 56)(50 53)(51 54)(52 55)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 39 36 43)(2 44 33 40)(3 37 34 41)(4 42 35 38)(5 48 63 59)(6 60 64 45)(7 46 61 57)(8 58 62 47)(9 54 16 49)(10 50 13 55)(11 56 14 51)(12 52 15 53)(17 28 22 31)(18 32 23 25)(19 26 24 29)(20 30 21 27)
(1 47 61 44)(2 37 62 59)(3 45 63 42)(4 39 64 57)(5 38 34 60)(6 46 35 43)(7 40 36 58)(8 48 33 41)(9 53 26 23)(10 19 27 49)(11 55 28 21)(12 17 25 51)(13 24 30 54)(14 50 31 20)(15 22 32 56)(16 52 29 18)
(1 21 36 20)(2 17 33 22)(3 23 34 18)(4 19 35 24)(5 52 63 53)(6 54 64 49)(7 50 61 55)(8 56 62 51)(9 60 16 45)(10 46 13 57)(11 58 14 47)(12 48 15 59)(25 41 32 37)(26 38 29 42)(27 43 30 39)(28 40 31 44)

G:=sub<Sym(64)| (1,36)(2,33)(3,34)(4,35)(5,63)(6,64)(7,61)(8,62)(9,16)(10,13)(11,14)(12,15)(17,22)(18,23)(19,24)(20,21)(25,32)(26,29)(27,30)(28,31)(37,41)(38,42)(39,43)(40,44)(45,60)(46,57)(47,58)(48,59)(49,54)(50,55)(51,56)(52,53), (1,7)(2,8)(3,5)(4,6)(9,29)(10,30)(11,31)(12,32)(13,27)(14,28)(15,25)(16,26)(17,56)(18,53)(19,54)(20,55)(21,50)(22,51)(23,52)(24,49)(33,62)(34,63)(35,64)(36,61)(37,48)(38,45)(39,46)(40,47)(41,59)(42,60)(43,57)(44,58), (1,34)(2,35)(3,36)(4,33)(5,61)(6,62)(7,63)(8,64)(9,14)(10,15)(11,16)(12,13)(17,24)(18,21)(19,22)(20,23)(25,30)(26,31)(27,32)(28,29)(37,43)(38,44)(39,41)(40,42)(45,58)(46,59)(47,60)(48,57)(49,56)(50,53)(51,54)(52,55), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,39,36,43)(2,44,33,40)(3,37,34,41)(4,42,35,38)(5,48,63,59)(6,60,64,45)(7,46,61,57)(8,58,62,47)(9,54,16,49)(10,50,13,55)(11,56,14,51)(12,52,15,53)(17,28,22,31)(18,32,23,25)(19,26,24,29)(20,30,21,27), (1,47,61,44)(2,37,62,59)(3,45,63,42)(4,39,64,57)(5,38,34,60)(6,46,35,43)(7,40,36,58)(8,48,33,41)(9,53,26,23)(10,19,27,49)(11,55,28,21)(12,17,25,51)(13,24,30,54)(14,50,31,20)(15,22,32,56)(16,52,29,18), (1,21,36,20)(2,17,33,22)(3,23,34,18)(4,19,35,24)(5,52,63,53)(6,54,64,49)(7,50,61,55)(8,56,62,51)(9,60,16,45)(10,46,13,57)(11,58,14,47)(12,48,15,59)(25,41,32,37)(26,38,29,42)(27,43,30,39)(28,40,31,44)>;

G:=Group( (1,36)(2,33)(3,34)(4,35)(5,63)(6,64)(7,61)(8,62)(9,16)(10,13)(11,14)(12,15)(17,22)(18,23)(19,24)(20,21)(25,32)(26,29)(27,30)(28,31)(37,41)(38,42)(39,43)(40,44)(45,60)(46,57)(47,58)(48,59)(49,54)(50,55)(51,56)(52,53), (1,7)(2,8)(3,5)(4,6)(9,29)(10,30)(11,31)(12,32)(13,27)(14,28)(15,25)(16,26)(17,56)(18,53)(19,54)(20,55)(21,50)(22,51)(23,52)(24,49)(33,62)(34,63)(35,64)(36,61)(37,48)(38,45)(39,46)(40,47)(41,59)(42,60)(43,57)(44,58), (1,34)(2,35)(3,36)(4,33)(5,61)(6,62)(7,63)(8,64)(9,14)(10,15)(11,16)(12,13)(17,24)(18,21)(19,22)(20,23)(25,30)(26,31)(27,32)(28,29)(37,43)(38,44)(39,41)(40,42)(45,58)(46,59)(47,60)(48,57)(49,56)(50,53)(51,54)(52,55), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,39,36,43)(2,44,33,40)(3,37,34,41)(4,42,35,38)(5,48,63,59)(6,60,64,45)(7,46,61,57)(8,58,62,47)(9,54,16,49)(10,50,13,55)(11,56,14,51)(12,52,15,53)(17,28,22,31)(18,32,23,25)(19,26,24,29)(20,30,21,27), (1,47,61,44)(2,37,62,59)(3,45,63,42)(4,39,64,57)(5,38,34,60)(6,46,35,43)(7,40,36,58)(8,48,33,41)(9,53,26,23)(10,19,27,49)(11,55,28,21)(12,17,25,51)(13,24,30,54)(14,50,31,20)(15,22,32,56)(16,52,29,18), (1,21,36,20)(2,17,33,22)(3,23,34,18)(4,19,35,24)(5,52,63,53)(6,54,64,49)(7,50,61,55)(8,56,62,51)(9,60,16,45)(10,46,13,57)(11,58,14,47)(12,48,15,59)(25,41,32,37)(26,38,29,42)(27,43,30,39)(28,40,31,44) );

G=PermutationGroup([[(1,36),(2,33),(3,34),(4,35),(5,63),(6,64),(7,61),(8,62),(9,16),(10,13),(11,14),(12,15),(17,22),(18,23),(19,24),(20,21),(25,32),(26,29),(27,30),(28,31),(37,41),(38,42),(39,43),(40,44),(45,60),(46,57),(47,58),(48,59),(49,54),(50,55),(51,56),(52,53)], [(1,7),(2,8),(3,5),(4,6),(9,29),(10,30),(11,31),(12,32),(13,27),(14,28),(15,25),(16,26),(17,56),(18,53),(19,54),(20,55),(21,50),(22,51),(23,52),(24,49),(33,62),(34,63),(35,64),(36,61),(37,48),(38,45),(39,46),(40,47),(41,59),(42,60),(43,57),(44,58)], [(1,34),(2,35),(3,36),(4,33),(5,61),(6,62),(7,63),(8,64),(9,14),(10,15),(11,16),(12,13),(17,24),(18,21),(19,22),(20,23),(25,30),(26,31),(27,32),(28,29),(37,43),(38,44),(39,41),(40,42),(45,58),(46,59),(47,60),(48,57),(49,56),(50,53),(51,54),(52,55)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,39,36,43),(2,44,33,40),(3,37,34,41),(4,42,35,38),(5,48,63,59),(6,60,64,45),(7,46,61,57),(8,58,62,47),(9,54,16,49),(10,50,13,55),(11,56,14,51),(12,52,15,53),(17,28,22,31),(18,32,23,25),(19,26,24,29),(20,30,21,27)], [(1,47,61,44),(2,37,62,59),(3,45,63,42),(4,39,64,57),(5,38,34,60),(6,46,35,43),(7,40,36,58),(8,48,33,41),(9,53,26,23),(10,19,27,49),(11,55,28,21),(12,17,25,51),(13,24,30,54),(14,50,31,20),(15,22,32,56),(16,52,29,18)], [(1,21,36,20),(2,17,33,22),(3,23,34,18),(4,19,35,24),(5,52,63,53),(6,54,64,49),(7,50,61,55),(8,56,62,51),(9,60,16,45),(10,46,13,57),(11,58,14,47),(12,48,15,59),(25,41,32,37),(26,38,29,42),(27,43,30,39),(28,40,31,44)]])

38 conjugacy classes

class 1 2A···2G2H2I2J2K2L2M4A4B4C4D4E···4V4W4X
order12···222222244444···444
size11···122228822224···488

38 irreducible representations

dim111111112224
type++++++++++
imageC1C2C2C2C2C2C2C2D4C4○D4C4○D42+ 1+4
kernelC23.404C24C4×C22⋊C4C428C4C23.23D4C24.3C22C23.11D4C22×C4⋊C4C2×C4⋊D4C22×C4C2×C4C23C22
# reps112424114882

Matrix representation of C23.404C24 in GL6(𝔽5)

100000
010000
001000
000100
000040
000004
,
100000
010000
004000
000400
000040
000004
,
400000
040000
001000
000100
000010
000001
,
300000
030000
004100
000100
000030
000002
,
340000
320000
004000
000400
000004
000010
,
130000
040000
001400
002400
000002
000030
,
100000
010000
001000
000100
000001
000040

G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[3,0,0,0,0,0,0,3,0,0,0,0,0,0,4,0,0,0,0,0,1,1,0,0,0,0,0,0,3,0,0,0,0,0,0,2],[3,3,0,0,0,0,4,2,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,4,0],[1,0,0,0,0,0,3,4,0,0,0,0,0,0,1,2,0,0,0,0,4,4,0,0,0,0,0,0,0,3,0,0,0,0,2,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,1,0] >;

C23.404C24 in GAP, Magma, Sage, TeX

C_2^3._{404}C_2^4
% in TeX

G:=Group("C2^3.404C2^4");
// GroupNames label

G:=SmallGroup(128,1236);
// by ID

G=gap.SmallGroup(128,1236);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,560,253,120,758,723,268,675,80]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=1,d^2=c*a=a*c,e^2=g^2=a,f^2=b*a=a*b,e*d*e^-1=g*d*g^-1=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f^-1=c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations

׿
×
𝔽